

Application of a moment to a solid surface, for example to represent a bending moment or torsion is a frequently encountered requirement. Use of a multipoint constraint (RBE3) is a common technique to accomplish this, and has its advantages and disadvantages. The main drawback is that the RBE3 cannot be created until the model is meshed, and is associated to a specific mesh and not the geometric surface.

Many FEM pre-processors include a "Total Load at a Point" option. It allows the specification of a load point and one or more surfaces to which the load will be distributed. PATRAN does include a "Total Load" option however moments are not supported. Application of a moment using the "Force, Nodal" option is a common error made by new users. This is basically invalid, as it applies the specified moment to each node. Not only does this not deliver the desired total moment; solid elements have no rotational degrees of freedom, so the load is transmitted directly to ground (provided the AUTOSPC parameter is active).

PATRAN does have the ability to model complex loadings through the use of fields and PCL formulas. This capability will be exploited to distribute moments over surfaces, and provide the "Total Load at a Point" functionality.

The following is untested on releases prior to 2008R1.

Linearly Distributed Load Approach

Beam and torsion theories assume a linear stress distribution originating from the neutral axis / centroid. It is fairly reasonable then to assume a linearly distributed surface traction to represent an applied moment. A rigorous mathematical proof of the technique presented herein is not provided. Rather, the core thought processes are discussed, and the method validated by examples.

Consider first, a simple rectangular beam with a linearly distributed applied load:

$$f_x(z) = k \cdot z$$
$$M_y = \oint_S f_x(z) \cdot z dS = k \oint_S z^2 dS$$

Recognizing that,

 $\oint_{S} z^{2} dS = I_{y}$ is a key to the method. Thus,

Further, the applied distributed load results in zero net force and zero moments in the other directions.

The exercise can be repeated to produce M_z . For this case, a negative sign is introduced to account for the coordinate system sign convention:

$$f_{x}(y) = l \cdot y$$

$$M_{z} = -\oint_{S} f_{x}(y) \cdot ydS = -l\oint_{S} y^{2}dS$$

$$M_{z} = -l \cdot I_{z}$$

$$l = -\frac{M_{z}}{I_{z}}$$

Since neither of these two load distributions affects the moment in the other directions, they may be superposed. A load distribution can be expressed to produce target M_v and M_z :

$$f_x(y,z) = -\frac{M_z}{I_z} \cdot y + \frac{M_y}{I_y} \cdot z$$

Beam cross-sections normal to the remaining y- and z- axes can be treated in the same manner to determine $f_y(x,z)$ and $f_z(x,y)$:

$$f_{y}(x,z) = \frac{M_{z}}{I_{z}} \cdot x - \frac{M_{x}}{I_{x}} \cdot z$$
$$f_{z}(x,y) = -\frac{M_{y}}{I_{y}} \cdot x + \frac{M_{x}}{I_{x}} \cdot y$$

Believing that the above force distribution is applicable to a generalized 3D case requires some intuition on how loads and moments of inertia can be decomposed / projected onto the coordinate planes. The validity shall be demonstrated by several examples.

First however, the capability to include force components is incorporated by adding a uniform load of form F/A. Additionally, the above equations are based on a coordinate system at the surface centroid. To allow an arbitrary coordinate system, offsets are incorporated:

$$f_x(y,z) = -\frac{M_z}{I_z} \cdot (y-\overline{y}) + \frac{M_y}{I_y} \cdot (z-\overline{z}) + \frac{F_x}{A}$$
$$f_y(x,z) = \frac{M_z}{I_z} \cdot (x-\overline{x}) - \frac{M_x}{I_x} \cdot (z-\overline{z}) + \frac{F_y}{A}$$
$$f_z(x,y) = -\frac{M_y}{I_y} \cdot (x-\overline{x}) + \frac{M_x}{I_x} \cdot (y-\overline{y}) + \frac{F_z}{A}$$

Note that the formulation still represents loads at the centroid, however allows the use of an arbitrary coordinate system to define the equations. For true "Total Load at a Point" functionality the moment terms must be modified to include extra moments caused by forces applied offset from the centroid. The additional moment terms could be include in the equations, however it is probably more convenient to calculate the adjusted moments first then use the results:

$$M'_{x} = M_{x} + F_{z} \cdot (y_{p} - \overline{y}) - F_{y} \cdot (z_{p} - \overline{z})$$

$$M'_{y} = M_{y} - F_{z} \cdot (x_{p} - \overline{x}) + F_{x} \cdot (z_{p} - \overline{z})$$

$$M'_{z} = M_{z} + F_{y} \cdot (x_{p} - \overline{x}) - F_{x} \cdot (y_{p} - \overline{y})$$

$$f_{x}(y,z) = -\frac{M'_{z}}{I_{z}} \cdot (y - \overline{y}) + \frac{M'_{y}}{I_{y}} \cdot (z - \overline{z}) + \frac{F_{x}}{A}$$
(1)
$$f_{y}(x,z) = \frac{M'_{z}}{I_{z}} \cdot (x - \overline{x}) - \frac{M'_{x}}{I_{x}} \cdot (z - \overline{z}) + \frac{F_{y}}{A}$$
$$f_{z}(x,y) = -\frac{M'_{y}}{I_{y}} \cdot (x - \overline{x}) + \frac{M'_{x}}{I_{x}} \cdot (y - \overline{y}) + \frac{F_{z}}{A}$$

where (x_p, y_p, z_p) is the load application point and $(\overline{x}, \overline{y}, \overline{z})$ is the centroid of the reaction surface(s).

Limitations and Generalized Extension

Through testing and experimentation, it was discovered that the above only holds true when working in a coordinate system orthogonal to the principal inertia directions (i.e. the non-diagonal inertia matrix terms equal zero). When this is not the case, the assertion that the field for example to create the x-moment results in zero y- or z- moments is invalid due to cross-talk from the non-diagonal terms.

For the majority of practical cases, the non-diagonal terms will be zero, however if not, one option to overcome this issue is to transform the applied loads into the principal inertia coordinate system. This is not that difficult, however requires the creation of and use of (for the field and load definition) a new Coord in the model.

Alternatively, an expanded set of equations has been determined that incorporate the non-diagonal terms to provide the correct result in an arbitrary Coord.

The formulation was determined by inspection; a rule that produced the correct equations for the orthogonal oriented case was determined, and then investigated to see if it worked in the general case.

First, it is evident that $\frac{M}{I}$ terms are prevalent. In general tensor scope, this suggests that the inverse of the inertia matrix is required.

Next it was observed that:

$$\begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix} \begin{pmatrix} \underline{M}_{x} \\ I_{x} \\ \underline{M}_{y} \\ I_{y} \\ \underline{M}_{z} \\ I_{z} \end{bmatrix} = \begin{pmatrix} f_{x} \\ f_{y} \\ f_{z} \end{pmatrix}$$

Is equivalent to Eqn. (1) (ignoring the pure forces and centroid offset).

It was thus hypothesized that:

$$\begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix} \begin{bmatrix} I_{11}^{-1} & I_{12}^{-1} & I_{13}^{-1} \\ & I_{22}^{-1} & I_{23}^{-1} \\ sym. & & I_{33}^{-1} \end{bmatrix} \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix}$$
where I_{nm}^{-1} are terms from $[I]^{-1}$

Expanding and collecting terms, and including the pure forces and centroid offsets, Eqn. (2) was tested and validated.

$$M'_{x} = M_{x} + F_{z} \cdot (y_{p} - y) - F_{y} \cdot (z_{p} - z)$$

$$M'_{y} = M_{y} - F_{z} \cdot (x_{p} - \overline{x}) + F_{x} \cdot (z_{p} - \overline{z})$$

$$M'_{z} = M_{z} + F_{y} \cdot (x_{p} - \overline{x}) - F_{x} \cdot (y_{p} - \overline{y})$$
(2)

$$f_{x}(y,z) = -(M'_{x} \cdot I_{13}^{-1} + M'_{y} \cdot I_{23}^{-1} + M'_{z} \cdot I_{33}^{-1}) \cdot (y - \overline{y}) + (M'_{x} \cdot I_{12}^{-1} + M'_{y} \cdot I_{22}^{-1} + M'_{z} \cdot I_{23}^{-1}) \cdot (z - z) + \frac{F_{x}}{A}$$

$$f_{y}(x,z) = (M'_{x} \cdot I_{13}^{-1} + M'_{y} \cdot I_{23}^{-1} + M'_{z} \cdot I_{33}^{-1}) \cdot (x - \overline{x}) - (M'_{x} \cdot I_{11}^{-1} + M'_{y} \cdot I_{12}^{-1} + M'_{z} \cdot I_{13}^{-1}) \cdot (z - \overline{z}) + \frac{F_{y}}{A}$$

$$f_{z}(x,y) = -(M'_{x} \cdot I_{12}^{-1} + M'_{y} \cdot I_{22}^{-1} + M'_{z} \cdot I_{23}^{-1}) \cdot (x - \overline{x}) + (M'_{x} \cdot I_{11}^{-1} + M'_{y} \cdot I_{12}^{-1} + M'_{z} \cdot I_{13}^{-1}) \cdot (y - \overline{y}) + \frac{F_{z}}{A}$$

An MS/Excel spreadsheet has been created to facilitate the calculations and field creation. It is illustrated in Example 2.

Example Implementation in PATRAN

The gearbox housing pictured below supports a motor fastened to surface 'A'. No other part of the gear train reacts torque to the housing except for the bolt feet. Grounding the feet will represent the connection to the adjacent structure.

The motor weighs 20lbs and may be subject to 7G vertical acceleration (generating –140lbs negative Z load). The centre of gravity of the motor is 4in from the mounting surface. Simultaneously, the motor produces 1000in-lbs of torque about the positive X-axis.

First the inertial properties of the reaction surface must be extracted. PATRAN includes a mass property tool, however it requires surfaces (rather than solid faces) as input. The surface is easily created using the *"Create, Surface, Extract, Face"* option:

Surface Moments and Total Load at a Point in MSC/PATRAN ©2011 Mitch Greenberg, FractureProof Research www.FractureProof.com

Next the *"Tools, Mass Properties, Show, 3D"* menu is used. Setting *Density* and *Thickness* to *1.0* will allow the calculation of surface properties:

Choosing the "*Define Region*" button, then "*Selected, Geometry*" allows selection of the surface (filtering surfaces from the entity type menu may facilitate the selection of the desired surface):

For this example, we shall use the global coordinate system. If an alternate system is desired, be sure to enter it in the *"Relative to Coordinate Frame"* box.

🔜 Mass Properties Display						_	
Summary Display of Center of Gravity, Principal Inertias,	Radii of Gyration, Mass, a	ind Volum					
	CG(CID 0)	CG(CID 0)	I-Principal	Radii of Gyr.	Mass	Volume	
1	3.500E+000	3.500E+000	2.078E+000	1.051E+000	1.880E+000	1.880E+000	1
2	5.000E-001	5.000E-001	1.039E+000	7.435E-001			-
3	-7.50E-001	-7.50E-001	1.039E+000	7.435E-001			
					J		
							الللغة
Expanded Cell Value							
Mass Property Display Option							
 Mass, CG, Principal Inertias, and Others 	C Principal Directi	ons in User-Specified F	Frame				
C Inertia Tensor	C Principal Direction	ons in Ref. Cartesian F	rame				
C Inertia Tensor at CG							
		Cance	el				

Upon entering apply the following information is displayed:

Since Coord 0 has been selected as the relative frame, columns 1 and 2 are identical providing the coordinates of the centroid. Had an alternate frame been selected, the second column provides the results in that system. The Mass (or Volume) result provides the area of the surface (recall that density and thickness were set to 1.0).

Next "Inertia Tensor at CG" provides the remaining required information:

🔜 Mass Properties Display						_	
Summary Display of Inertia Tensor at Center of Gravity i	n Frame 0 and in Referenc	e Cartesian Frame					
		Y	Z	x	Y	Z	<u> </u>
x	2.078E+000	0.000E+000	0.000E+000	2.078E+000	0.000E+000	0.000E+000	1
Y	0.000E+000	1.039E+000	-2.13E-006	0.000E+000	1.039E+000	-2.13E-006	1
Z	0.000E+000	-2.13E-006	1.039E+000	0.000E+000	-2.13E-006	1.039E+000	1
							_
<u>र</u>							
Expanded Cell Value							
Mass Property Display Option	C. Drin einel Directi	and in Union Constitution F	·				
C Inertia Tensor	Principal Direction Principal Direction	ons in Def. Cartesian Fr	rame				
Inertia Tensor at CG	 Thioparbirecta 	ona in rich curtoaun n	unic .				
		Cance	н				

Again, two sets of data are provided. The first matrix corresponds to the selected relative frame, the diagonal provides I_x , I_y and I_z .

The last piece of information required is the coordinates of the load application point. For this problem, we know it is 4in from the centroid thus $(x_p, y_p, z_p)=(7.5, 0.5, -0.75)$. The example is fully defined:

$$\begin{split} F_x &= 0 & F_y = 0 & F_z = -140 \\ M_x &= 1000 & M_y = 0 & M_z = 0 \\ \end{split}$$

$$\begin{split} A &= 1.88 & \text{Eqn. (1) is used since the inertia non-diagonal terms} \\ x_p &= 7.5 & y_p = 0.5 & z_p = -0.75 \\ \overline{x} &= 3.5 & \overline{y} = 0.5 & \overline{z} = -0.75 \\ I_x &= 2.078 & I_y = 1.039 & I_z = 1.039 \\ \end{split}$$

$$\begin{split} M'_x &= M_x + F_z \cdot (y_p - \overline{y}) - F_y \cdot (z_p - \overline{z}) = 1000 - 140(0.5 - 0.5) - 0(-0.75 + 0.75) = 1000 \\ M'_y &= M_y - F_z \cdot (x_p - \overline{x}) + F_x \cdot (z_p - \overline{z}) = 0 + 140(7.5 - 3.5) + 0(-0.75 + 0.75) = 560 \\ M'_z &= M_z + F_y \cdot (x_p - \overline{x}) - F_x \cdot (y_p - \overline{y}) = 0 + 0(7.5 - 3.5) - 0(0.5 - 0.5) = 0 \\ \end{split}$$

$$\begin{split} f_x(y,z) &= -\frac{M'_z}{I_z} \cdot (y - \overline{y}) + \frac{M'_y}{I_y} \cdot (z - \overline{z}) + \frac{F_x}{A} = \frac{560}{1.039} \cdot (z + 0.75) \\ f_y(x,z) &= \frac{M'_z}{I_z} \cdot (x - \overline{x}) - \frac{M'_x}{I_x} \cdot (z - \overline{z}) + \frac{F_y}{A} = -\frac{1000}{2.078} \cdot (z + 0.75) \\ f_z(x,y) &= -\frac{M'_y}{I_y} \cdot (x - \overline{x}) + \frac{M'_x}{I_x} \cdot (y - \overline{y}) + \frac{F_z}{A} = -\frac{560}{1.039} \cdot (x - 3.5) + \frac{1000}{2.078} \cdot (y - 0.5) - \frac{140}{1.88} \end{split}$$

It should be pointed out that these load distributions are in pressure units. PATRAN allows the definition of pressure based on a field, however that would only allow loads normal to the surface. The Distributed Load option also functions in units of pressure, but is not applicable to 3D elements. The load option we want is *"CID Distributed Load"*.

First however, a field must be created to reproduce the above equations.

"Fields, Create, Spatial, PCL Function, Vector, Real" are the required options, plus specification of a name for the field. The desired relative coordinate system must be specified the same both on this field entry, and later on the CID Distributed Load entry. (Default Coord 0 for this example).

The Vector Function definition, first, second, third direction corresponds to our f_x , f_y , f_z force distributions. x, y, and z are permitted as variables within the functions and are denoted with the (') symbol. The input looks as follows (the third component is not fully visible as the input scrolls):

Finally, the load can be created. *"Load/BCs, Create, CID Distributed Load, Element Variable, (Target Element Type) 3D".* A name must be specified as well.

The *"Input Data"* menu allows selection of the field to define the force. Recall, the *"Analysis Coordinate Frame"* must be the same as the relative frame for mass property calculation and the field definition.

Last, "Select Application Region, (Select) Geometry" is used to select the solid face on which to apply the load. (Note that now the actual solid is referenced; the surface created for the mass property calculation is no longer need and may be deleted if desired).

The bolt hole surfaces of the feet are grounded in all directions for simplicity. The resulting graphical display is not always very useful, however after the model is executed, *Freebody* results are used to better visualize the loading, and validate the applied values. (Be sure to enable *Grid Point Force Balance* from the *"Analysis, Subcases, Global Data, Output Requests"* in order to display Freebody Results).

The use of *"Results, Freebody, Loads, Applied Loads"* allows review of the resulting reaction. Specifying the load application point coordinates as the *"Summation Point"* should closely reproduce the intended load. (The values will not be exact due to discretization of the field onto the mesh). If the Global Coordinate system is not used, then the *"Transform Results"* option should specify the relative coordinate system. Further note, even when *"Transform Results"* is selected, the *"Summation Point"* is specified in Coord 0. It is often convenient to create a geometrical point at the load position and select it.

Target Load:			Applied Load:						
$F_x = 0$	$F_y = 0$	$F_{z} = -140$	$F_x = -1.37$	$F_{y} = 1.22$	$F_z = -139.98$				
$M_{x} = 1000$	$M_y = 0$	$M_z = 0$	$M_x = 999.11$	$M_{y} = 0.39$	$M_{z} = -3.55$				

Relative Coord 1 is used and load applied at point 3in along z-axis. Load distributed over all end surfaces (multiple surfaces may be selected for mass property calculations and the CID Distributed Load application).

$F_{x} = 1200$	$F_{y} = -700$	$F_{z} = 2000$
$M_{x} = -5000$	$M_{y} = 2000$	$M_{z} = 3000$

The MS/Excel spreadsheet *fields_calc.xls* was created to facilitate the generalized 3D field calculation. First, we must extract the mass properties for the loaded surfaces:

Surface Moments and Total Load at a Point in MSC/PATRAN ©2011 Mitch Greenberg, FractureProof Research www.FractureProof.com

Geometry Elements Loads/BCs Materials Properties L	oad Ca Fields	Analysis Results	Insight XY Plot				
random.db - default_viewport - default_group - Enti	ty			_8×			
					Action: Show	•1	
			<u>_</u>				
					Define R	egion	
					Relative to Coordinate	Frame	
					Coord 1		
					Density/Concentrated N	lass	
					1.0/0.0 🔻		
					Thicknesses/Areas/NS	м	
					1.0/1.0/0.0 ▼		
		x x					
					Plot Principal Axes	at CG	
					Create Princ. Coor	rd. Frame el	
		2	\mathbf{X}		Mass Properti	es Display	
						1	
					Apply	Cancel	
Y							
X							
Mass Branatics Diselars							
riass propercies Display							_ 🗆
Summary Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass,	and Volume					_ □
Summary Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0)	and Volume CG(CID 1)	I-Principal	Radii of Gyr.	Mass	Volume	
Hists Frogeries of Splay Summary Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000	and Volume CG(CID 1) -1.63E-001	I-Principal 3.335E+000	Radii of Gyr. 9.249E-001	Mass 3.898E+000	Volume 3.898E+000	
Nass Properties Display Summary Display of Center of Gravity, Principal Inertias, Ra 1 2	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000	and Volume CG(CID 1) -1.63E-001 -2.18E-001	I-Principal 3.335E+000 3.080E+000	Radii of Gyr. 9.249E-001 8.889E-001	Mass 3.898E+000	Volume 3.898E+000	
Inters Properties of Splay Summary Display of Center of Gravity, Principal hertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volume CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.896E+000	Volume 3.898E+000	
Pross Properties of Splay Summary Display of Center of Gravity, Principal hertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volum CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E+000	Volume 3.898E+000	
Inters Properties of Splay Summary Display of Center of Gravity, Principal hertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volume CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.896E+000	Volume 3.898E+000	
Incess Properties Display iummary Display of Center of Gravity, Principal hertias, Ra 1 2 3	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volum CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.896E+000	Volume 3.898E+000	
Incose Properties Display ummary Display of Center of Gravity, Principal hertias, Ra 1 2 3	di of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volum CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.896E+000	Volume 3.888E+000	
Incos Properties Display ummary Display of Center of Gravity, Principal hertias, Ra 1 2 3	di of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volum CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.896E+000	Volume 3.888E+000	
Interse properties Display ummary Display of Center of Gravity, Principal hertias, Ra 1 2 3	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volum CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.896E+000	Volume 3.888E+000	
ummary Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volume CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E+000	Volume 3.896E+000	
Index Properties Depinay ummary Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volume CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E+000	Volume 3.896E+000	
Interservoperues of spinay immary Display of Center of Gravity, Principal Inertias, Ra	di of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001	and Volume CG(CID 1) -1.63E-001 -2.18E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E+000	Volume 3.898E+000	
Interse Property Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 	and Volution CG(CD 1) -1.63E-001 -2.18E-001 -4.28E-001 -4.28E-001	Frame	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E+000	Volume 3.896E+000	
Parass Problements Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 5.316E-001	and Volution CG(CD 1) -2.18E-001 -2.28E-001 -4.28E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E+000	Volume 3.898E+000	
Parasa Properties Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 5.316E-001	and Volution CG(CD 1) -2.18E-001 -2.28E-001 -4.28E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E-000	Volume 3.896E+000	
Index Properties Display of Center of Gravity, Principal Inertias, Ra I I 2 3 inertia Tensor at CG	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 5.316E-001	and Volution CG(CD 1) -2.18E-001 -2.18E-001 -4.28E-001 -4.28E-001	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E-000	Volume 3.898E+000	
Index Properties Display Immary Display of Center of Gravity, Principal Inertias, Ra I I 2 3 ipanded Cell Value ass Property Display Option Mass, CG, Principal Inertias, and Others Inertia Tensor Inertia Tensor at CG Inertia Tensor at CG Inertia Tensor at Center of Certains in Effective i	di of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 5.316E-001 C Principal Direc C Principal Direc	and Volution CG(CD 1) -2.18E-001 -2.18E-001 -4.28E-001 -4.28E-001	Frame	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E-000	Volume 3.896E+000	
Inters Properties Display Immary Display of Center of Gravity, Principal Inertias, Ra I I 2 3 3 cpanded Cell Value Iass Property Display Option Mass, CG, Principal Inertias, and Others I Inertia Tensor at CG Mass Properties Display Immary Display of Inertia Tensor at Center of Gravity In Fr	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 C Principal Direc C Principal Direc	and Volume CG(CD 1) 1.63E-001 -2.16E-001 -4.28E-001 4.28E-001 tions in User-Specified tions in Ref. Cartesian F	I-Principal 3.335E+000 3.080E+000 4.500E-001 Frame Frame Trame	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.898E-000	Volume 3.896E+000	
Inters Properties Display Immary Display of Center of Gravity, Principal Inertias, Ra I I 2 3 3 rpanded Cell Value Iass Property Display Option Mass, CG, Principal Inertias, and Others Inertia Tensor at CG Mass Properties Display Immary Display of Inertia Tensor at Center of Gravity In Fr X	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 C Principal Direc C Principal Direc rame 1 and in Reference X 1.228E+000	and Volume CG(CD 1) -1.63E-001 -2.16E-001 -4.28E-000 -4.28E-0	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.889E-001 3.398E-001	Mass 3.895E+000	Volume 3.898E+000	
Inters Properties Display Summary Display of Center of Gravity, Principal Inertias, Ra	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.316E-001 C Principal Direc C Principal Direc C Principal Direc x 1.228E+000 -1.05E+000	and Volume CG(CD 1) -1.63E-001 -2.16E-001 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.839E-001 3.398E-001 3.398E-001 3.398E-001	Mass 3.895E+000	Volume 3.898E+000	
	dii of Gyration, Mass, CG(CID 0) 7.854E+000 1.469E+000 5.318E-001 C Principal Direc C Principal Direc C Principal Direc rame 1 and in Refaren X 1.228E+000 -1.05E+000 7.165E-001	and Volume CG(CD 1) 1.63E-001 -2.18E-001 -2.18E-001 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-000 -4.28E-001 -4.28E-00	I-Principal 3.335E+000 3.080E+000 4.500E-001	Radii of Gyr. 9.249E-001 8.839E-001 3.398E-001 3.398E-001 3.398E-001 3.334E-000 -7.78E-002 7.019E-002	Мазз 3.898E+000 	Volume 3.898E+000 3.898E+000	

Expanded Cell Value
Mass Property Display Option
C Mass, CG, Principal Inertias, and Others
C Principal Directions in User-Specified Frame
C Inertia Tensor
C Principal Directions in Ref. Cartesian Frame
C Inertia Tensor at CG

▼ | ↓

Higher precision is possible if "Write to Report File" is chosen:

MASS PROPERTIES REPORT File: C:\msc_work\pcl_dev\TotalLoadatPoint\random.db Date: 26-Sep-11 Time: 14:39:58 Scalar Properties: Volume Mass 3.898328 <mark>3.</mark>898328 Center of Gravity in Coordinate Frame: Comp. Ref. Cartes. Frame 1 X 7.854010 -0.162967 <u>-0.162967</u> 1.469017 -0.218558 0.531551 -0.428472 Y Ζ Principal Inertia Quantities: Pr. Inertias Rad. of Gyr. 0.924907 0.888872 0.339760 3.334837 3.080040 0.450010 Inertia Tensor in Coordinate Frame: Comp. Ref. Cartes. Frame 1 XX 12.827685 2.130284 3.457993 3.287481 ΥY 242.028442 251.977295 7.7. -45.055447 XY -1.191775 -45.055447 -2.934718 -0.132842 -16.204571 0.444275 YΖ -16.204571 ZX Inertia Tensor at CG in Coordinate Frame: Comp. Ref. Cartes. Frame 1 XX 3.313596 1.228382
 XX
 3.313396
 1.220302

 YY
 0.456805
 2.638771

 ZZ
 3.094486
 2.997734

 XY
 -0.077818
 -1.052925

 YZ
 0.109318
 0.232221

 ZX
 0.070188
 0.716483
 Principal Directions in Reference Cartesian Frame: Vector 1 Vector 2 Vector 3 0.961679
 -0.272727
 -0.028170

 0.048134
 -0.998719

 0.960887
 0.042033
 -0.015605 0.273734 Principal Directions in Frame 1:
 Vector 1
 Vector 2
 Vector 3

 0.495845
 -0.162095
 -0.853149

 -0.517363
 0.733910
 -0.440127

 0.697477
 0.659622
 0.280044
 Space-Fixed and Body-Fixed Rotation Angles in Reference Cartesian Frame Space 3-2-1 Body 3-1-3 15.833065 -1.615691 15.833065 -1.615691 -1.614262-1.61569187.59001215.90095 Space-Fixed and Body-Fixed Rotation Angles in Coordinate Frame 1: Space 3-2-1 Body 3-1-3 -62.711433 73.737190 18.102892 -58.555843 57.532280 46.597782 Mass Properties Entity List: Surface 1:7 The number of included entities is 7. The Mass Properties entity rejection list is empty.

The identified values are simply entered into the green fields:

🔀 Microsoft Ex	cel - fields_c	alc.xls												_	
Eile Edit V	jew Insert F	ormat Tool	s <u>D</u> ata <u>W</u> ir	ndow <u>H</u> elp	Adobe PDF									_	l 🗗 🗙
🛛 🗅 🚔 🖪 🔒) 🖨 🖪 🔅	9 🕺 🖻	n 🛍 💅	N + CH +	🔮 Σ 🖍	A↓ Z↓ Z↓ A↓	🛍 根 100	% - 🕐	-] B <u>U</u>		\$.00 +.0	ð - <u>A</u> -		» *
1 🏂 🚼 🛯 🚇	🛛 🔛 🖓 🖓	I 🔽 Jabi	_ @ EE			3 🗞 🗸									
C38	▼ :	 Random 	1_1												
В	С	D	E	F	G	Н	<u> </u>	J	K	L	М	N	0	Р	-
1	T				0.1.1.0										
2	Total Load	at a Point	MSC/PATH	AN Fields	Calculation					: 					
3	©2011 Witte	ch Greenbe	erg, Fractur	erroor kes	search										
5	www.nactu	reproof.con	<u>.</u>		0 8		8			8	2		8		
6	Relative Co	ord	6		5	17									
7	1														
8															
9	Force in Re	ef Coord													
10	1200	-700	2000												
11	Moment in	Relative Co	oord		Adjusted M	foment at (CG								
12	-5000	2000	3000		-2162.95	5788.232	2623.654								
13			0.1												
14	Load Point	in Relative	Coord		-										
15	U	U	3												
17	CG in Pola	tive Coord			0 <u></u>)					22			23		
18	-0 16297	-0 21856	-0 42847												
19	Area	0.21000	0.12011												
20	3.898328	0											-		
21	Inertia at C	G in Relati	ve Coord		Inverse Ine	rtia Matrix				8					
22	1.228382	-1.05293	0.716483		1.699695	0.718865	-0.46193								
23	-1.05293	2.638771	0.232221		0.718865	0.685601	-0.22493								
24	0.716483	0.232221	2.997734		-0.46193	-0.22493	0.461414								
25						13									_
26					Field Comp	onents						3			_
27					X	y 007.001	Z 4000 440								
20		8		X.	007 2000	-907.001	727 3422						8		
30			6	y. 7'	-1823 /2	-727 342	121.3422								
31				£.	-1020.42	-121.342	V								
32					Field Equa	tions									
33				X:	-907.80090	4*('v0.218	8558)+1823	.419002*('z	0.428472)+307.8242	77				
34				y:	907.800904	4*("x0.162	967)+727.3	42197*('z(0.428472)+	-179.56416	2				
35				Z:	-1823.4190	02*('x0.16	62967)+-72	7.342197*()	y0.21855	8)+513.0404	62				
36															
37	Unique Fiel	d Name		Copy Pas	te Comman	d to PATRA	AN Commai	nd Line:							_
38	Rando	om <u>1</u>		fields_cre	ate("Randon	1_1", "Spat	ial", 1, "Veo	ctor", "Real	", "Coord 1	I", "", "Func	tion", 3, "X	", "Y", "Z", '	-907.80090	4*('y0.21	855
	Calc														ЪГ
Draw - 🗟 🙆	AutoShape	es • 🔪 🔌		-	ð - 🥖 -	<u>∧</u> - ≡	= ≓ •								
Ready													NUM		- //

The field may be created manually by using the *"Field Equations"*. However, it is even simpler to copy and paste the command. Make sure a unique field name is chosen, then use CTLR-C to copy the contents of cell F38.

Use CTLR-V to paste into PATRAN's command line and hit enter to create the field:

Finally, create the CID Distributed Load:

The opposite end of the beam is grounded, material and properties defined, then the model is solved.

(Remember *Summation Point* is referenced to Coord 0, so use of a point is convenient).

Target Load:			Applied Load:					
$F_{x} = 1200$	$F_{y} = -700$	$F_{z} = 2000$	$F_{x} = 1197$	$F_{y} = -701$	$F_{z} = 1995$			
$M_{x} = -5000$	$M_{y} = 2000$	$M_{z} = 3000$	$M_{x} = -4997$	$M_{y} = 1995$	$M_{z} = 2992$			

Validation Example 1: Torsion on a Cylinder

Loading: 1500in-lbs about +z-axis of Coord 1 (located at the centroid of the cylindrical surface of the shaft segment). Eqn. (1) used since Coord 1 is orthogonal to inertia principal coordinate system.

$$\begin{aligned} F_x &= 0 & F_y = 0 & F_z = 0 \\ M_x &= 0 & M_y = 0 & M_z = 1500 \end{aligned}$$

$$\begin{aligned} A &= 3.063 \\ x_p &= 0 & y_p = 0 & z_p = 0 \\ \overline{x} &= 0 & \overline{y} = 0 & \overline{z} = 0 \\ I_x &= 0.6468 & I_y = 0.6468 & I_z = 0.4307 \end{aligned}$$

$$\begin{aligned} M'_x &= M_x + F_z \cdot (y_p - \overline{y}) - F_y \cdot (z_p - \overline{z}) = 0 \\ M'_y &= M_y - F_z \cdot (x_p - \overline{x}) + F_x \cdot (z_p - \overline{z}) = 0 \\ M'_z &= M_z + F_y \cdot (x_p - \overline{x}) - F_x \cdot (y_p - \overline{y}) = 1500 \end{aligned}$$

$$\begin{aligned} f_x(y, z) &= -\frac{M'_z}{I_z} \cdot (y - \overline{y}) + \frac{M'_y}{I_y} \cdot (z - \overline{z}) + \frac{F_x}{A} = -\frac{1500}{0.4307} \cdot y \\ f_y(x, z) &= \frac{M'_z}{I_z} \cdot (x - \overline{x}) - \frac{M'_x}{I_x} \cdot (z - \overline{z}) + \frac{F_y}{A} = \frac{1500}{0.4307} \cdot x \\ f_z(x, y) &= -\frac{M'_y}{I_y} \cdot (x - \overline{x}) + \frac{M'_x}{I_x} \cdot (y - \overline{y}) + \frac{F_z}{A} = 0 \end{aligned}$$

Target Load:			Applied Load:						
$F_x = 0$	$F_y = 0$	$F_z = 0$	$F_{x} = 2.92$	$F_{y} = -6.33$	$F_{z} = 0.0$				
$M_x = 0$	$M_y = 0$	$M_{z} = 1500$	$M_{x} = 4.82$	$M_{y} = -4.88$	$M_z = 1486.50$				

(Note: Point 19 was created at the centroid of the cylindrical surface / origin of Coord 1)

🖪 Mass Properties Display						_	
Summary Display of Inertia Tensor at Center of Gravity in Fra	ame 1 c. a in Referenc	ce Cartesian Frame					
	х	Y	z	x	Y	Z	
x	2.591E-001	7.956E-007	-3.73E-006	7.528E-001	5.294E-006	1.837E-006	1
Y	7.956E-007	7.528E-001	5.294E-006	5.294E-006	9.997E-001	3.738E-006	1
Z	-3.73E-006	5.294E-006	9.997E-001	1.837E-006	3.738E-006	2.591E-001	1
					-	-	
							_
Expanded Cell Value							
Mass Property Display Option	C Principal Direct	ione in Llear Specified E	rama				
C Inertia Tensor	C Principal Direct	ions in Ref. Cartesian Fi	rame				
Inertia Tensor at CG							
Variational							
		Cance	H				

Although the inertia diagonal terms are zero, the spreadsheet may be used for convenience nonetheless.

©2011 Mite	ch Greenbe	rg, Fractur	eProof Re	esearch						
www.fractu	reproof.cor	n								
Relative Co	bord									
1										
Force in Re	ef Coord									
-100	0	0								
Moment in	Relative C	oord		Adjusted N	Noment at C	CG				
0	0	-2000		0	300	-2000				
Lood Daint	in Deletive	Coord								
	in relative	Coold								
U	0	0								
CG in Rela	tive Coord									
0.0 11 1.000	00010	3								
Area	, v									
0.786765										
Inertia at C	G in Relati	ve Coord		Inverse Ine	rtia Matrix					
0.259142	0	0		3.858888	0	0				
0	0.752809	0		0	1.328358	0				
0	0	0.999682		0	0	1.000318				
				E: 11.0						
				Field Com	ponents					
				x	y 0000 coc	2 200 5075				
			X:	2000 64	2000.636	398.5075				
			у. 	-2000.04	0	0				
			۷.	-350.507	U	0				
				Field Equa	tions					
			x .	2000 6362	02*('v-0.00(0001+398	507457*(">	-3 000000)+	-127 10275	6
			V:	-2000.6362	202*('x-0.00	0000)				
			z:	-398.50745	57*('x-0.000	000)				
Unique Fie	ld Name		Сору Ра	ste Comman	d to PATRA	N Comma	nd Line:			
coup	oling		fields cr	eate("coupling	g", "Spatial	", 1, "Vecto	or", "Real",	, "Coord 1",	"", "Functio	on", 3,

Surface Moments and Total Load at a Point in MSC/PATRAN ©2011 Mitch Greenberg, FractureProof Research www.FractureProof.com

Target Load:

$F_x = -100$	$F_y = 0$	$F_z = 0$
$M_x = 0$	$M_y = 0$	$M_{z} = -2000$

Applied Load: $F_x = -100.2$ $F_y = -0.08$ $F_z = -0.02$ $M_x = 0.30$ $M_y = -0.32$ $M_z = -2003.3$

CAUTION

The preceding methodology will determine fastener loads similar to typical bolt pattern techniques (i.e. Swift, T., in-house tools). None of these methods account for the underlying stiffness of the structure. The RBE3 method suffers from the same limitation. Consider:

The two hole surfaces were connected to the load application point with RBE3's, once analyzed 500lbs is reacted at each hole. In reality due to the lower stiffness of the upper hole, less load should have been taken there. The same is true with the subject method of this document; forces are applied simply by F/A. Since the hole surfaces have equal area, they will receive equal load.

Situations where relative stiffness come into play, require more extensive modeling of the mating structures.

	Mass Properties Display							. 🗆 🗵				
٢	Summary Display of Center of Gravity, Principal Inertias, Radii of Gyration, Mass, and Volume											
		CG(CID 0)	CG(CID 2)	I-Principal	Radii of Gyr.	Mass	Volume					
	1	4.716E-001	1.306E+000	5.555E+001	1.659E+000	2.018E+001	2.018E+001					
	2	1.216E+000	-1.12E+000	4.949E+001	1.566E+000	-						
	3	-3.38E-005	2.174E-001	1.218E+001	7.770E-001							
		<u> </u>	^	^	^			_				

	Х	I Y	7	1 v		1
			2	X	Y	Z
х	4.783E+001	7.836E+000	-6.28E+000	1.621E+001	1.157E+001	1.088E-003
Y	7.836E+000	3.964E+001	1.920E+001	1.157E+001	4.547E+001	-7.62E-004
Z	-6.28E+000	1.920E+001	2.975E+001	1.088E-003	-7.62E-004	5.555E+001

Conclusion

Surface moments and "Total Load at a Point" functionality has been demonstrated by determination of appropriate PCL functions and application of field based CID Distributed Load. The method provides an alternative to mesh dependent multipoint constraint techniques. Reasonable accuracy has been demonstrated; it should be noted that accuracy of the total load should improve with mesh refinement.

Creation of a PCL User Form add-in that takes as input the force and moment vectors, load application point, and surface list could automate the creation of the field, and load. This activity is suggested for consideration as a future project for FractureProof Research.